Today’s VR systems are both fantastic and restrictive: they blow you away, but it’s clear how far they have to go. The HTC Vive is arguably the best out there, but having to buy a souped-up laptop just to run it, paying full price for brief games that feel more like demos, and trailing a huge cable off your head and fumbling to mount trackers on your ceiling…it’s not ideal. But it’s still incredible enough to give a taste of where it’s headed.
Here’s my best guess of what the future high-end VR setup looks like. I’m an early-stage VC focused on virtual and augmented reality, so I pieced this together based on the forward-thinking pitches and demos I’ve been lucky enough to see through my work, plus a lifetime of burning through sci-fi and video games. Check out the bottom of this post for a list of VR inspiration.
Side note that AR will be much bigger than VR, in both the diversity of use cases and market size (analysts predict $30B for VR versus $90B for AR by 2020), but I still believe that most homes will have a dedicated VR space for total immersion.
Body movement
Let’s start from the ground up. Forget the room scale debate: the VR setup of the future moves with you. Maybe it uses an omnidirectional treadmill that adjusts speed and incline based on viewer inputs. To be truly immersive, it needs to be around 8 feet by 8 feet, given that the average sprint stride length for men—the longest possible stride variant—is 93 inches. That gives users more than enough space to walk, run, and even sprint while in VR. Or maybe a section of the floor itself serves as the treadmill, raised up as a platform that controls pitch, yaw, roll, and speed.
Of course, not everyone wants to—or can—be on their feet for long periods, and plenty of immersive entertainment, like watching movies, is sedentary. VR experiences will support a seated and reclining mode when appropriate and shouldn’t be more complicated than pulling up a standard chair. Movement in these modes will likely employ similar mechanics to those we’re beginning to see today, like teleportation via gesture or gaze.
Tactile feedback
Next up is the bodysuit. To mimic the tactile feedback that you experience in real life, you’ll need sensors and haptics all over your body or at least in significant areas, like the face, hands, and feet. Focused, acute pulses simulate sharp points; broader, more distributed ones can simulate sensations like dipping into water. For those who want to push immersion further, optional climate controls mirror environmental conditions (within a safe temperature range).
The first hardware generation attempting to solve the body feedback problem will likely use full bodysuits with haptic responses aligned to the VR experience. The suit’s gloves will simulate gripping objects by restricting finger movement: wrap your hands around a hard plastic cup in VR, and your gloves will freeze at the point where you can’t squeeze any further. Squishier objects will have more give. It’s possible that putting on a full suit will be too much effort for most people, and they’ll find that hand and facial coverage is enough to give them the immersion level they want. Humans have more nerve receptors in our fingers than anywhere else in the body (besides our feet and lips), so covering tactile input in the hands may be enough to make the mind suspend its disbelief while in VR.
Control options
Our future VR setups won’t need controllers. Steve Jobs once said about using the human hand for interaction that “God gave us ten styluses…let’s not invent another.” Imagine the same touch and motion-based actions we’re used to on mobile phones, only happening in the air with our hands while we’re in VR. Need to hold something as part of a VR experience? Your gloves mimic the width and feel of a gun in a first-person shooter, the handle of a scalpel in a surgery simulator, or the stitching on a football…all while you’re empty-handed. Voice UI can supplement gestures with more detailed natural language commands.
Weight is tougher to simulate in VR. The suit could stiffen and slow a user’s movement corresponding to the relative weight of an object: e.g., stooping to pick up a piece of furniture and would force a slow standup, versus an unaffected standup for a feather. Haptic feedback, movement speed in VR, and other techniques could add to the weight effect. For an in-depth discussion of the weight problem in VR today, see “
Manus VR:
Neurodigital:
Handpose:
Dexta Robotics:
Minority Report (film)
AR and VR viewers:
- HTC Vive (VR):
- Snow Crash (novel)
Omnidirectional treadmills:
- Virtuix Omni:
- Cyberith Virtualizer:
- Ready Player One (novel)
Haptic feedback bodysuits:
- Teslasuit:
- Nullspace VR (hand, arm, and chest coverage):
- Mindmaze:
- Emotiv:
- 8i: www.snapchat.com
- Star Trek (TV show)
Eye tracking:
- Fove:
- Eyefluence:
- VisiSonics:
- RedPill VR:
Scent creation:
- Cyrano/ONotes: Accomplice, which is a sponsor of Upload.